models, field studies and the importance of scale

Andrea Kölzsch Theoretical Ecology, AGNLD

Outline

- 1) The diversity-inasibility hypothesis Elton
- 2) A LV model assessing invasibility
- 3) Spatial pattern studies
- 4) The influence of extrinsic factors in an experimental study
- 5) An extended model accounting for scale and resources
- 6) Conclusions

Community Invasibility

- One component of community stability is "resistance" to abiotic and biotic disturbances.
- Invasion success = propagule pressure + invasiveness + invasibility
- Invasibility = ease at which invasive species from low numbers become established members of a community
- Is there influence of community diversity on invasibility? What kind of influence?

Elton 1958

"the balance of **relatively simple communities** of plants and animals is more easily upset than that of richer ones; that is more subject to destructive oscillations in populations ... and **more vulnerable to invasions**"

"oceanic islands and crop monocultures are simple ecosystems that show high vulnerability to invasions ... and frequent outbreaks of population subsequently"

High native diversity decreases comunity invasibility

SUPPORT

- classical niche theory (MacArthur):
 - strongly structured (interconnected) communities
 - competition for resources
 - limited niche space
- "sampling effect" for strong competitor in community

CAUTION

- indirect facilitation
- loosely structured non-equilibrium communities
- diversity is **correlated** with disturbance, isolation, resource availability, physical stress, competitors, consumers, that also directly influence invasibility
- diversity increases microheterogeneity
 → more invasible
- diversity-stability (May)
- no influence if invader with very different traits

Modelling Invasibility

Invasion resistance deals with great perturbations: no asymptotic stability but community in new statespace with added species

Assumptions

- resident community at equilibrium
- finite species pool (characteristics limited)
- invading species similar to residents
- small **spatial scale** (LV assumes mixed pop.s)

How to quantify invasion success?

Questions from niche theory

- Invasibility into vacant niches
- Niche saturated communities are only invasible by competitive displacement.
- Is there priority of residents over invaders? Why?
- Do species replacement rates decline with species richness?

Model

- Examine invasibility of
 - stable model communities
 - varying in diversity and average strength of species competition
 - single trophical level
- Lotka-Volterra comptetion equations

$$\frac{dN_i}{dt} = \frac{r_i N_i}{K_i} \left(K_i - \sum_{j \neq i}^n \alpha_{ij} N_j \right)$$

Case 1990

Resident communities I

- α_{ij} chosen **random**ly from uniform distribution
- **r**_i=0.5 for all **i**
- choose K_i so that the equilibrium densities of all species are feasible $(n_i > 0)$
- test for stability (small perturbations) of core community \rightarrow discard if fails
- selection may bias properties of α_{ij} , however, unimportant here

Resident communities II

- resource utilization overlap matrix $U_{N \times M}$ gives rates of utilization of resident *i* on resource *k*
- u_{ik} from log-normal distribution
- community matrix A with

$$\alpha_{ij} = \frac{\sum_{k=1}^{M} u_{ik} u_{jk}}{\sum_{k=1}^{M} u_{ik}^2}$$

- K_i and r_i selected as before
- → A is positive definite
- resulting core community is globally stable if feasible

Community invasion • (I) α_{ii} for invader drawn from same distribution as residents (II) add new row to resource utilization matrix U• K of invader is average of resident K_i

- simulate invasion by introducing the invader at low numbers ($K_i/1000$) into equilibrium resident community
- follow community trajectory until it settles into a new equilibrium (not just look at equil. densities)

Simulation results

- **invasion success** = persistence at equilibrium
- 4 possible outcomes
 - community augmentation
 - replacement
 - rejection failure
 - indirect failure (only variant I)

Invasibility vs. diversity

 Invasion outcome as a function of community size (random α_{ij}, similar for overlap matrices (II))

Case 1990

Invasibility vs. interactions

 Invasion outcome as a function of interaction strengths

Community fracturing

- positive growth does not imply invasion success
- feasibility and multiple domains of local attraction for random α_{ij}
- only for random α_{ij} (I)

Case 1995

Colonization / extinction

colonization = invasion success (augmentation, replacement) extinction (invasion caused) = resident species loss (replacement, indirect failure)

- equilibrium community size where species extinction rate balances colonization rate
- species turnover at equilibrium lower with increased average interaction strength

Role of community vs. invader

- ANOVA of replicated invasion attempts (random *K*) into different core communities
- i.e. compared between-community differences to between-invader (within-community) differences in invasion success/augmentation success
- **F**>5 (**p**<0.001)
- **between community differences** are more important than invader characteristics

Invasion repelling

- Augmentation rates decline with community diversity (May)
- Priority effect: ability to repell invaders by emergence of multiple domains of attraction in large/strongly connected communities
- → disadvantage of **low** frequency and latecoming species into diverse system (even if equivalent competitor)

Invasion repelling

- using resource utilization overlap matrices no multiple domains of attraction
- diversity-stability

Variant II

Case 1991

Indirect interactions

• species' enemy's enemy is ally

inferior competitors are protected from competitive exclusion by invading superior

→ species rich communities protect themselves from invasion

Summary

"species-interactive theory of island biogeography"

- large, tightly interacting community resistant to invasion without invoking
 - coevolution
 - adaptation (Lack)
 - a priori resident priority
- multiple stable domains of the diffuse competition system yield invasion resistance
- However, interaction is just part of the story!

Spatial pattern studies

- correlate invader abundance (as indicator for invasibility) with community diversity
- many studies find positive relationship between diversity and invasibility (which is explained in various ways)

e.g. Australian heath- and shrubland reserves

Levine and D'Antonio 1999

Why positive relationship?

- Environmental covariates (similarity of natives and invasive species)
- Propagule supply, species pool size
- Environmental heterogeneity
- indirect facilitation
- community maturity stage
- Current vs. pre-invasion resident diversity (influence of invader on diversity)

The importance of scale and covarying factors

- Scale dependence and extrinsic factors drive diversity and invasibility
 - latitude
 - climate
 - soils
 - resource supply

The influence of extrinsic factors

- experimental study about scale dependence of diversity-invasibility relationship
- Carex nudata tussocks (discrete micro-islands) in a California riparian system
 - (1) survey **invasion patterns** on similar sized tussocks
 - (2) random *in situ* manipulation of local diversity in a natural context and seed addition of 3 different invasive plants

The influence of extrinsic factors

Tussock Species Richness (not including the invader)

- positive correlations may not reflect intrinsic effects of diversity
 - may result from similar response of natives and exotics to environmental conditions (soil nutrients, disturbance, prop. pressure)

Levine 2000

The influence of extrinsic factors

• results of **small scale** manipulation experiments

- resident species
 cover/diversity
 affects
 germination of
 invasive seeds
- on large scale covarying factors determine invasibility (small *R*² of diversity effect)

Levine 2000

Scale and resources

• small-scale:

- constant environmental variables
- only differing number of native species
- large-scale:
 - variation also in environmental factors that may covary with diversity and influence invasibility
- need to account for the effect of such covariates
- extension of Case's model to account for resource availability

Model extension

- resource utilization overlap method
 - direct link of environmental differences with interaction strength
- modified algorithm for selection of u_{ij}
- for each species *i* select *M* uniformly distributed random numbers $x_{ik} \in [0,1]$ and add each to u_{ik} (k random) if x_{ik} > threshold *T*
- U_{all} : niche breadth increases with M, T=0
- U_{fix} : niche breadth independent of M, T varies with M, so that $M(1-T) = M_{util} = const$.

Scale dependence

- Small scale
 - const M:
 invasibility ~ 1/N
- Large scale
 - N increases slowly with M: invasibiliy ~ N
 - N increases rapidly with M: invasibility ~ 1/N
- in field studies often $N \sim M$

Byers and Noonburg 2003

Resource dependence

- increased N* with M
- U_{fix}: divesity promotes invasibility (natives and invasives similarly regulated, resources available)
- *U*_{all}: invasibility not affected by *N**, but rather by factors covarying with M (e.g. disturbance)

Competition strength

- $M \sim 1/Var(\alpha)$
- U_{fix}
 - $\boldsymbol{M} \sim 1/\bar{\alpha}$
 - proportionally less competition
 - \rightarrow more free resources
 - "specialist" community
 - invasibility rises more rapidly than for "generalists"

Byers and Noonburg 2003

Summary

- decreasing interaction strength as resources increase → increasing invasibility with native diversity at large scale
- niche breadth behaviour of natives determines
 - strength of positive relationship between native and invasive species diversity
 - relative contribution of extrinsic factors to the community
- increasing interaction strength at constant resource numbers → decreasing invasibility with native richness at small scale

Stochastic niche theory

- similar conclusion:
 - invasibility depends on the degree to which native species exploit habitat heterogeneity in limiting resources
 - scale dependence of spatial heterogeneity

Tilman 2004

However

Does invasibility drive community diversity?

Conclusions

- Interactions at different scales and covarying factors (e.g. resource availability) drive patterns of diversity – invasibility.
- Most diverse communities are at great risk of invasion, and species loss affects neighbourhoodscale diversity and may erode invasion resistance.
- We need to conserve diversity to repel invaders.